An Efficient Image Similarity Measure Based on Approximations of KL-Divergence Between Two Gaussian Mixtures

نویسندگان

  • Jacob Goldberger
  • Shiri Gordon
  • Hayit Greenspan
چکیده

In this work we present two new methods for approximating the Kullback-Liebler (KL) divergence between two mixtures of Gaussians. The first method is based on matching between the Gaussian elements of the two Gaussian mixture densities. The second method is based on the unscented transform. The proposed methods are utilized for image retrieval tasks. Continuous probabilistic image modeling based on mixtures of Gaussians together with KL measure for image similarity, can be used for image retrieval tasks with remarkable performance. The efficiency and the performance of the KL approximation methods proposed are demonstrated on both simulated data and real image data sets. The experimental results indicate that our proposed approximations outperform previously suggested methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of Similarity Measures for Template Matching

Image matching is a critical process in various photogrammetry, computer vision and remote sensing applications such as image registration, 3D model reconstruction, change detection, image fusion, pattern recognition, autonomous navigation, and digital elevation model (DEM) generation and orientation. The primary goal of the image matching process is to establish the correspondence between two ...

متن کامل

Multivariate Generalized Gamma Distribution for Content Based Image Retrieval

This paper deals with the joint modeling of color textures in the context of Content Based Image Retrieval (CBIR). We propose a generic multivariate model based on the Generalized Gamma distribution to describe the marginal behavior of texture wavelet detail subbands. Then the information of dependence across color components is incorporated in the modeling process using the Gaussian copula. Th...

متن کامل

A distance measure between GMMs based on the unscented transform and its application to speaker recognition

This paper proposes a dissimilarity measure between two Gaussian mixture models (GMM). Computing a distance measure between two GMMs that were learned from speech segments is a key element in speaker verification, speaker segmentation and many other related applications. A natural measure between two distributions is the Kullback-Leibler divergence. However, it cannot be analytically computed i...

متن کامل

A Distance measure Between GMMs Based o its Application to Speake

This paper proposes a dissimilarity measure between two Gaussian mixture models (GMM). Computing a distance measure between two GMMs that were learned from speech segments is a key element in speaker verification, speaker segmentation and many other related applications. A natural measure between two distributions is the Kullback-Leibler divergence. However, it cannot be analytically computed i...

متن کامل

An Analytic Distance Metric for Gaussian Mixture Models with Application in Image Retrieval

In this paper we propose a new distance metric for probability density functions (PDF). The main advantage of this metric is that unlike the popular Kullback-Liebler (KL) divergence it can be computed in closed form when the PDFs are modeled as Gaussian Mixtures (GM). The application in mind for this metric is histogram based image retrieval. We experimentally show that in an image retrieval sc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003